
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 16, 199-215 (1993) 
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SUMMARY 

This paper investigates the use of defect correction procedures for the solution of finite volume approxima- 
tions to systems of conservation laws. Particular emphasis is laid on the order of accuracy obtained after 
a fixed finite number of iterations. It is shown that a high order of accuracy may be achieved after only one 
defect correction iteration, involving two inversions of a stable lower-order-accurate operator. However, this 
result is found to  be critically dependent on the consistency of the lower-order operator, a property which 
does not always hold for conservative finite volume discretizations. Through numerical experiments, the 
lack of consistency of these schemes is found to inhibit severely the finite termination property of the defect 
correction process. Results are presented for linear advection, Poisson's equation, and the Euler equations. 

KEY WORDS Defect correction Conservation laws 

1. INTRODUCTION 

The discretization of conservation laws almost inevitably results in a compromise between 
accuracy and efficiency. The linear algebraic systems derived from low-order approximations are 
generally stable and may be solved very efficiently by methods such as m ~ l t i g r i d ' . ~ ~  or precon- 
ditioned conjugate  gradient^.'^' However, the accuracy obtained from such discretizations is 
often not satisfactory until the mesh is so fine that the order of the algebraic system becomes 
prohibitive. An alternative approach is to limit the refinement of the mesh and use more accurate 
discretizations. The difficulty in this case is that these discretizations are generally less compact 
and require more complicated procedures for their solution. More importantly, they are often less 
stable and may lead to matrices with very large condition numbers, which standard precondition- 
ing cannot rectify. These factors can seriously limit the range of efficient solution procedures 
available and result in unacceptable computer time requirements. 

The defect correction method provides a partial answer to some of these problems, producing 
accurate solutions but requiring only the inversion of a stable lower-order operator at each step 
of an iterative process. For this purpose, the efficient algorithms mentioned above may be 
employed. This paper is concerned with the use of defect correction for the solution of systems of 
conservation laws, such as the Euler equations describing the flow of an inviscid, compressible 
fluid. The method has been adopted for the solution of these equations by many authors,'2'13'15 
who use a highly efficient multigrid method for the inversion of the lower-order operator. 

Although defect correction is designed to converge to a particular higher-order discrete 
solution, it is not always necessary to converge the iteration fully in order to obtain an 
approximate solution of the required accuracy. This paper examines, in particular, the accuracy 

0271-2091/93/030199-17$13.50 
0 1993 by John Wiley & Sons, Ltd. 

Received May 1992 
Revised September 1992 



200 G. J. SHAW AND P. I. CRUMPTON 

obtained after a single defect correction iteration, showing that, for linear advection, a second- 
order approximation may be obtained at the cost of only two inversions of a first-order operator. 
It is found that, for this property to hold, the consistency of the first-order scheme is of paramount 
importance. For the Euler equations, conservative finite volume schemes are the natural discretiz- 
ation. However, such schemes are not always consistent on distorted meshes, achieving their 
accuracy through supraconvergence. The finite termination property of the defect correction 
iteration is shown not to hold in this case. 

The paper begins with a description of defect correction for linear partial differential equations. 
Some straightforward results are given concerning the accuracy obtained after a single iteration. 
These are illustrated by the numerical results presented in Sections 3-5, for linear advection, 
Poisson's equation and the non-linear Euler equations, respectively. 

2. DEFECT CORRECTION 

This section introduces the defect correction procedure as applied to linear partial differential 
equations. The method has several possible generalizations to non-linear problems, which are 
described, for example, in Reference 7. One particular non-linear variant is used for the Euler 
equations in Section 5. 

Consider the linear partial differential equation 

Lu=f, u=u(x), X E R C R d ,  (1) 

Rh = {XI: i= 1,2, ... , n) cR, (2) 

subject to suitable conditions on the boundary 6R of R. Define a mesh 
- 

with characteristic stcplength h. Let UER" denote the restriction of u to Rh, with ith element u(x,) ,  
and similarly let FER" be the restriction of J: 

Consider two distinct approximations to the differential problem (l), defined on the mesh Rh 
and given by 

L,U1= Fi , LzU2 = Fz . (3) 
It is assumed that the n x n matrix L ,  : R"-+R" is easily invertible, but has a lower consistency 
order than L2 : R"-+R". Thus, 

L iU=Fi+Tl ,  L,U=FZ+Tz, (4) 

( 5 )  
for some vector norm 1 1  - 1 1  and constants C1, Cz. It is further assumed that the boundary 
conditions have been discretized and incorporated into the linear systems (3), so that FI, F2 
represent approximations to F with appropriate boundary data included. 

where the truncation error vectors TI and T2 satisfy 

II T1 I I 5 ClhP', I I Tz I I I C2hP2, P2 > P1, 

Defect correction is an iterative process 

(6 )  U(0) = L - 1 F 
1 1 7  

U(kt 1)=U'k'+L;1(F2-L2U(k)), k = O ,  1, 2, ..., 
which involves inversion of the lower-order operator L1 only. The method evolved from the 
deferred correction scheme of Fox6 and has since then been studied by many authors; examples 
include References 21, 22, 10, 1 1  and 15. 
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Defining the discrete error E(k) = Uz - U(k', equation (6) gives 

where 

is the iteration matrix. The process, therefore, converges to the higher-order solution Uz provided 
the spectral radius p ( C )  satisfies p(G) < 1, the asymptotic rate of convergence being governed by 
the value of the spectral radius. 

However, Pereyra2' proved that, under certain conditions, a higher-order solution is indeed 
obtained long before the iteration has converged, after a small finite number of iterations. The 
following single iteration theorem exemplifies Pereyra's results. 

Theorem I 

Suppose that L I U = F 1  +TI, L2C=Fz+Tz and define the iterates 

U'"=U'o'+L1 '(FZ-LzU""), (9) u ( 0 )  = L - 1 F 
1 I ?  

where the truncation error vectors TI ,  T, satisfy the conditions JIT, )I I C, hP', IIT, 11 I C2hP' for 
svme norm 1 1 . 1 : .  Let &'(k)=U-U(k), k = O ,  1. 

Then 1 I8(')11 I Ch'. where r = min( p1 + q, pz ) ,  provided 

for some positive real constants C1, C2, Cs, C,, C independent of h. 

ProoJ: From the definition of the truncation error T2, it is clear that 

U = U + L 7 ' ( F2 - LzL+ T2). 

Subtracting the equation for U(l) in (9) from (10) gives 

6 ' " = ( I  -- L L lL,)E'o'+ L TZ. 
But 

&'(0)=TJ - L - ' F  1 1- -L;'TI. 

Thus, 

6")=(I--L;'LZ)L;1T1 +L;'T2, 

and, hence. 
- I I8(')1i I C1 C A h ' P '  +q' + C2CShP2. - 

Remarks 

1. Note that the error &Yk) is between the analytical solution of ( 1 )  and the kth iterate Vk), 
whereas E'k) denotes the error between the fixed point of (6) and Vk). 

2. Condition 1 is a common stability condition on the lower-order operator, which may be 
expected for many standard discretizations. This condition ensures that the global error of 
an approximation is of at least the same order as the truncation error. 
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3. Typically, 111 - L ;  L2 I I = O( l), and it is only by taking the product with L ;  that a value 
q > 0 can be obtained for condition 2, i.e. 

Il(1-L; lL2W; ill@ I l ~ - ~ ~ ' ~ 2 1 1  I lLF 11, (15) 

As an example of Theorem 1, consider the case where I IT, I I is first-order and I IT2 1 1  second- 
order, i.e. p ,  = 1 and p2 = 2. If L1 has a bounded inverse and I I G L ;  ' 1 1  = O(h), the analytical error 
of the first iterate 116(')11 is already second-order. Results of this type are illustrated in Section 3. 
In this situation there may be little advantage in continuing the iteration to convergence. Indeed, 
examples will be presented for which the first iterate is more accurate than the fixed point of the 
iteration. 

It is important to note that on a non-uniform mesh it is quite possible to have ]ITl 1 1  =0(1) but 
I I L ; T1 I I = O(h), in which case the method achieves first-order global accuracy despite being 
inconsistent, and is said to be supraconvergent. Suppose now that T2 is second-order and 
condition 2 holds with q =  1. Under these conditions, the first iterate cannot be proved to be 
second-order accurate since the term IIGL;lTIII may be split either as IlGll IIL;'TIII or 
1 1  GL; 1 I I I T1 11, which are both generally only of first order. The results of Section 3 will 
demonstrate that second-order accuracy is, in fact, generally not obtained for these inconsistent 
supraconvergent lower-order schemes. 

The single iteration theorem is readily generalized to deal with multiple iterations of defect 
correction. Following the manner in which (1 1) was derived, it is easy to show from (4) and (6)  that 

b ( k + 1 ) = ~ b ( k ) + ~ ; 1 ~ 2 ,  k = o ,  1,2 ,... . (16) 

As a consequence, it follows that 
k - 1  

gcw = Gkg'O'+ 1 G ~ L ; ~ T ~  
j = O  

k - 1  

=GkLFIT1+ C GjLT1T2, k = l , 2  ,... . 
j - 0  

Given a stable lower-order operator and a convergent defect correction process, the accuracy of 
the kth iterate is then dependent on the order of IIGkL;' 1 1 .  However, it is generally more difficult 
to obtain an accurate bound for this quantity. 

Hackbusch' presents the more general result that the kth iterate is of order min (p2, (k+ l )p l )  
provided L, is stable, and a relative consistency condition bounding the norm of L,  - L ,  holds. 
This result is based on the use of norms on scales of Banach spaces. Subject to these conditions, 
optimal accuracy is obtained as soon as k >p2/p1 - 1. 

3. DEFECT CORRECTION FOR LINEAR ADVECTION 

In this section numerical results are presented for the constant-coefficient linear advection 
equation 

Qu,+bU,=o, a>O, b>O, X=(X, y)E[O, I]', (18) 
discretized on successively distorted and stretched grids. These are generated by first defining 
a uniform N x N mesh 

nh={(xij,yij): x i j = ( i - 1 ) h ,  yij=(j-l)h,  i , j= l ,  ..., N ) ,  (1 9) 
where h = 1/(N - l), which is then distorted by randomly perturbing each interior node within 
a circle of radius ah/200. The parameter cr, therefore, represents the percentage of distortion. The 
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extreme case of IT= 100 permits coincident nodes. The stretching is achieved using the function 

xij:=~v(xij7p), y i j : = w ( y i j , p ) 7  i , j = l ,  ..., N ,  (21) 
for some stretching parameter p, The aim of the experiments is to establish whether the finite 
termination property of defect correction holds in practice on such meshes. 

The higher-order scheme is derived from the cell vertex d i s c r e t i ~ a t i o n . ~ ~ , ~ , ~ ~  It is obtained by 
taking an area-weighted linear combination of four neighbouring cell residuals, as in the update 
procedure of Reference 8. Let U, denote the approximate solution at the node r as depicted in 
Figure 1. Similarly, let (xr, y r )  be the co-ordinates of that node and define ~X,=X, -X~ ,  

dy,.,=yr-y,. The higher-order scheme may then be written as 

where V =  V, + Vo + VR + V, is the sum of the respective control volumes surrounding node I .  Due 
to the presence of spurious error modes in this discretization, an iterative solution procedure will 
converge only very slowly.2 

Two distinct lower-order operators are used, the first is the unique three-point consistent 
upwind finite difference method given by 

which has a first-order truncation error on any mesh. The second is a conservative vertex-centred 

D (74 

First Order First Order 

Finite Difference Finite Volume 

P 
5 Ef3 9 7 

Second Order 

Finite Volume 

Figure 1. Stencil of operators 



204 G. J. SHAW AND P. 1. CRUMPTON 

upwind finite volume scheme 

where V is the area of the quadrilateral ABCD, whose vertices are the centroids of the mesh cells 
surrounding node 1. This method loses consistency on non-uniform meshes, but obtains first- 
order accuracy through supraconvergence. I t  has been adopted for solution of the Euler 
equations.599 The stencils for (22), (23) and (24) are represented in Figure 1. 

The convergence behaviour of a defect correction method using these definitions of L1 and L2 
may be investigated by means of Fourier analysis on a uniform mesh x = (x, y) E Q h  as defined by 
(19), in which case the lower-ordx operators (23) and (24) are identical. The Fourier symbol G(8) 
of the iteration matrix, defined by 

G exp (i8 * x / h )  = G (0) exp (i6 * x,’h), 6 = (6’ d2),  (25) 

is shown in Figure 2 for the case a = 1 ,  h = 2. No damping is observed on the lines 8 = ( k n, d 2 ) ,  
O = ( d , ,  +n), or in their neighbourhoods. This is a consequence of the fact that these modes lie in 
the nullspace of L2 but not of L , .  There is also no damping near the origin for characteristic 
modes such that ud, + he2 =O. Clearly, the iteratcs will not converge rapidly to the fixed point Uz. 
However, the general conclusion is that the iteration damps smooth modes far more effectively 
than high-frequency modes. 

Figure 3 shows experimental results on successively randomized meshes, with cr= 10,25,50 and 
90. The graph shows log( I18(k)lI) against log (1,”) for increasing N ;  the slope, therefore, repres- 
ents the order of convergence. The first ten defect correction iterations k = 0, . . . , 10 are shown on 
each graph. Clearly, the finite volume scheme achieves only first-order accuracy after several 
defect correction iterations, whereas the consistent finite difference scheme gives second-order 
accuracy after only one iteration. This is so despite the fact that even the solution of the 
higher-order scheme, which is the fixed point of the iteration, is not second-order on these 
distorted meshesz4 This is illustrated by Figure 4, which shows the accuracy of the fixed-point 

Figure 2. Symbol of i t e r d o n  matrix for linear adwction (18) 
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solution of L2 U2 = F2 on the same sequence of meshes. Note that on distorted meshes the first 
iterate is significantly more accurate than the limit of the iteration. 

Some insight into the behaviour of the method for the two definitions of L I  may be gained from 
Figure 5 .  This shows the errors gC0) and @), on a randomly distorted mesh, before and after 
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Figure 3. Convergence of ten defect correction iterations on distorted meshes 
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Distorted Meshes: 0 = 10, 25, 50, 90 

. . . .  . . .  
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I l l u )  WIH) 

Fixed Point Soluton 
Figure 4. Convergence of U2 on distorted meshes 

a defect correction iteration, for the two methods. For both methods, we expect gcO) to be 
first-order, by virtue of supraconvergence for the finite volume scheme and the combination of 
stability and consistency for the finite difference method. This indeed is the case, as may be 
observed in Figure 3. However, & ( O )  for the consistent finite difference method may be seen to be 
significantly smoother than for the conservative finite volume scheme. Since 

& ( I ) =  G#O’ + L ; ~ T ~  (26) 
from (1 l ) ,  the accuracy of U(l) is influenced largely by the effect of the iteration matrix on 8(”). As 
predicted by the Fourier analysis, this matrix damps smooth modes more effectively than 
oscillatory ones. The result is that the defect correction iteration is more effective for the smooth 
errors produced by (23) than for those of (24), and second-order accuracy is achieved in the former 
case after one step, as shown in Figure 3. 

Figure 6 shows the results for (18) discretized on stretched meshes, in the same format as for 
Figure 3. For these meshes the two lower-order schemes give identicai results, with second-order 
accuracy being achieved after one iteration for both schemes. In this case the first-order finite 
volume scheme maintains consistency through the ‘smooth’ stretching function (20). 



FINITE TERMINATION OF DEFECT CORRECTION METHOD 207 

Finite Difference Finite Volume 

After 

Figure 5. Contour plat of the error before and after a defect correction iteration with finite difference and finite volume 
lower-order operators on a randomly distorted mesh: u=25 

4. DEFECT CORRECTION FOR POISSON’S EQUATION 

The results of the previous section illustrate that second-order accuracy may be obtained at the 
cost of only two inversions of a first-order operator. As a further demonstration of the finite 
termination property, it is shown in this section that fourth-order accuracy may be achieved after 
two inversions of a stable second-order approximation to the Poisson’s equation 

v 2 u = J ;  u=u(x),  x=(x,y)€sz=[o, 1 1 2 ,  (27) 
with u given by Dirichlet data on 6R. 

Equation (27) is discretized on the N x N uniform mesh Rh defined by (19). Let U,, denote the 
approximation to u ( x I J ,  y,,). The lower-order operator L I  is the usual five-point scheme obtained 
by 

u X X ( x >  y,)% [ U , - I , , - 2 U , , J + U , + l , J ] / h 2 ,  (28) 

with a similar approximation for u ) , ~ ,  This method has a consistency order of two on the uniform 
mesh Rh, and can be inverted using the optimally efficient multigrid method.’ The discretization 
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Table I. Error norms and orders of convergencc for defect correction iterations k =0, . . . , 5 applied to 
Poisson's equation. L, is defined using (28) and L ,  using (29) and (30) 

Norm of 67(k) Order of convergence 

k N = 9  N=17 N=33 N=65 k 9-17 17-33 33-65 

0 0 . 2 6 ~ 1 0 - ~  0 . 6 4 ~ 1 0 - ~  O . l 6 ~ l O - ~  0 . 3 9 ~ 1 0 - '  0 2.04 2.03 2.02 
1 0 . 1 4 ~  l o - '  0 8 7 x  lo-' 0 . 5 3 ~  0 . 3 3 ~  1 3.99 4.03 402 
2 0 . 6 3 ~ 1 0 ~  0 . 1 3 x 1 0 - ~  0 . 1 0 ~ 1 0 - ~  0 7 2 ~ 1 0 - ~ '  2 5.65 3.65 3.80 
3 0 - 4 0 ~  lo- -  0 . 1 4 ~  0.11 x 10 0 . 7 5 ~  lo-" 3 4.90 3.61 3.89 
4 0 4 0 x 1 0 '  0 . 1 3 ~ 1 0 - ~  0 . 1 1 ~ 1 0 "  0 . 7 5 ~ 1 0 - "  4 4.89 3.61 3.89 
5 0 . 4 0 ~  0 . 1 3 ~  lo-' 0.11 x 10 ' 0.75 x lo-" 5 4.89 3.61 3.89 

can be regarded either as a finite difference scheme, or as a finite volume method using the control 
volume ABCD shown in Figure 1. 

The higher-order operator is defined by replacing (28) in the interior by the approximation 

u,,(x, y )  = [- Ui-2.,i + 16Ui- l . , i  -30Uij + 16Ui+,,  - Ui+2,,i]/12h2. (29) 

Near the boundary, at x = h, (28) is replaced instead by 

u,, (x, y) ,= [ 10 Ui - - 15 U i j  ~ 4 Ui+ 1, + 14 Ui + 2 ,  - 6 Ui+  3 .  + Uiif4, j ] / 1 2 h 2 ,  (30) 

with a similar modification at x = 1 - h. With these definitions, and a similar treatment of uyyr the 
approximation L2 is consistent to order four. 

This example differs substantially from those discussed in Section 3. The higher-order operator 
L2 does not in this casc admit spurious high-frequency error modes, and, as a consequence, the 
defect correction process converges rapidly. Table I shows the result of applying five defect 
corrections using these definitions of L 1  and L 2 .  Clearly, 8(") is second-order, which reflects the 
fact that (28) has a second-order truncation error and L 1  is stable. Fourth-order accuracy is 
obtained after the first iteration, although the error norms at this stage are significantly larger 
than those for subsequent iterations. After the second iteration, the error norms change very little 
and there is clearly no advantage in continuing the defect correction process. These results 
suggest that the conditions of the single-iteration theorem hold, with p1 = 2, p 2  = 4 and q = 2. 
Thus, the order of accuracy of the first iterate is given as r = min(p, + q, p 2 )  = 4. Alternatively, the 
result proved by Hackbusch7 suggests the order r = min { p2 ,  ( k +  l)p,  1 = 4. 

5. DEFECT CORRECTION FOR THE EULER EQUATIONS 

This section considers the use of defect correction techniques for solution of the steady two- 
dimensional Euler equations 

where the fluxes f and g are defined in terms of the state vector w by 
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These equations describe conservation of mass, momentum and energy for an inviscid compress- 
ible fluid. In (32)  p is the density, (u, v) are the Cartesian components of velocity and E is the total 
energy per unit volume. It is assumed that the fluid is a perfect gas. In this context, the pressure 
p is defined by the equation of state 

p = ( y  - 1)[E - i p ( u 2  + v2)3, (33) 
where y is the ratio of specific heats. 

Figure 7. Contours of (a) pressure coefficient and (b) Mach number for subsonic flow past a blunt forebody, M ,  =0.5: 
(top) first-order solution; (bottom) after one defect correction 
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For the Euler equations, a conservative discretization is crucial for correct shock location.'6 
The lower-order scheme used here is a generalization of (24), upwinded by van Leer flux vector 
splitting,' solved using a highly efficient multigrid procedure,23 with alternating line 
Gauss Seidel smoothing. The higher-order scheme is obtained by taking an area-weighted linear 
combination of cell  residual^,^ as in Section 3. Note that no artificial diffusion terms are used to 
lend stability to this discretization, which will consequently be liable to produce unphysical 
oscillatory solutions, especially in the neighbourhood of shocks. Furthermore, the presence of 
spurious error modes in this discretization leads to very slow convergence of an iterative solution 
procedure, including defect correction; hence, the desirability of the finite termination property. 
However, assuming the finite termination property to hold, the residuals of the higher-order 
scheme will not be zero after only a few iterations. It is, therefore, unclear precisely what discrete 
equations have been solved; this prohibits straightforward error analysis. 

Note that in this case the discrete approximations yield non-linear systems of algebraic 
equations. As a consequence, the defect correct iteration (6) must be modified to take account of 
the non-linearity. Denoting the lower-order approximation by N1 (U,) = 0 and the higher-order 
scheme by N2(U2) = 0, the defect correction iteration used here is 

This same non-linear correction procedure is used in the FAS multigrid algorithm of Brandt.' 
Note that defining 

N1 (U) = LIU- F', NZ(U) = L2U - F2, (35) 

where L1, L2 are the linear operators of Section 2, the iteration (34) reduces to (6). 
Two test problems are considered here. The first is a subsonic flow past a blunt forebody with 

freestream Mach number M ,  =0.5. Figure 7 compares contour plots of the solution of the 

Pressure Coeffiaent 
i 

Mach n u m h  
4 

Figure 8. Pressure coefficient (a) and Mach number (b) around leading edge of the blunt forebody: n first-order scheme; 
8 after one defect correction; A second-order vertex-centred scheme 



212 

. .... ... . ... ... ... ... 

G. J .  SHAW AND 1’. 1. CRUMPTON 

.. . .... .. . . . 

Table 11. (‘omparison of CI’L timcs for defect correction 

Method CPU (s) 

First-order scheme 
One-defect correction 
Nine-defect corrections 
Second-order scheme 

1 Oh 
187 
71 7 
760 

Preswre Coefficient r----l 

Mach 

Figure 9. Contours of (a) pressure coefficient and (b)  Mach number for transonic channel flow at IM, -0,675: 
(top) first-order solution: (bottom) after one defect correction 
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Pressure Coefficient 
2 0  

Mach number 

’”- 
1 5  

1 0  

+ 0 5  
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-0 5 

I 
0 0  0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 0  

Figure 10. Pressure coefficient (a) and Mach number (b) for transonic channel flow: 3 first-order scheme; 0 after one 
defect correction; A second-order vertex-centred scheme 

first-order scheme and after a single defect correction. Figure 8 shows a detailed comparison of 
the two solutions and a third independent solution, calculated on the same mesh, from a vertex- 
centred ~ c h e m e , ~  which is designed to be second-order accurate. The defect correction iteration 
gives a clear improvement in the peaks of both Mach number and pressure coefficicnt around the 
leading edge of the forebody, which are characteristic of this geometry. However, the accuracy of 
the vertex-centred scheme is not matched and little further improvement was observed after 
subsequent iterations, as was the case in the linear-advection analogue (Figure 3). Table I1 
indicates the cost in CPU time for these calculations and a clear saving is made by adopting the 
solution from a single defect correction iteration. 

Figures 9 and 10 show the results for transonic channel flow at M ,  =0675, before and after the 
first defect correction iteration, and those from the vertex-centred scheme. This test problem 
appeared in Reference 20. The shock strength and resolution are significantly improved by defect 
correction, giving remarkable agreement with the vertex-centred method. However, oscillatory 
behaviour is beginning to develop, which becomes more apparent in subsequent iterations. This is 
due to the lack of any special treatment of the shock region in the higher-order operator. This 
agreement is not so surprising since, in the vicinity of shocks, the vertex-centred scheme is only 
first-order accurate, and, so, the defect correction iteration improves the accuracy of the lower- 
order operator by a small constant, as is the case in the linear-advection analogue (Figure 3). 

6. CONCLUSIONS 

The results for linear advection clearly demonstrate that second-order accuracy may be obtained 
in only one defect correction iteration on highly distorted meshes. Indeed, this property is 
obtained even in cases where the fixed point of the iteration is not itself second-order accurate. It 
has been found from the results reported here, and other experimental tests, that the finite 
termination property described above is crucially dependent on the consistency of the lower- 
order operator. 
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The finite termination property has been further exemplified by numerical results for Poisson’s 
equation, which show that fourth-order accuracy can be achieved at the cost of only two 
inversions of a stable second-order operator. 

For transonic Euler calculations, conservation is imperative for the correct location of shocks. 
Thus, the lower-order operator should be both conservative and consistent for the finite 
termination property to hold. The results indicate that improvements can be obtained after 
a single iteration despite the lack of consistency of the lower-order scheme, whose accuracy is 
derived from supraconvergence. However, judging from the results for linear advection, it seems 
unlikely that the finite termination property has been achieved in these Euler results. 

The defect correction procedure adopted here was not found to be an efficient iterative 
technique for solving the higher-order problem to a given tolerance. 
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